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C O N S P E C T U S

Antimicrobial peptides (AMPs) provide protection against a variety of pathogenic bacteria and are, therefore, an important
part of the innate immune system. Over the past decade, there has been considerable interest in developing AMPs as intra-

venously administered antibiotics. However, despite extensive efforts in the pharmaceutical and biotechnology industry, it has proven
difficult to achieve this goal. While researchers have solved some relatively simple problems such as susceptibility to proteolysis,
more severe problems have included the expense of the materials, toxicity, poor efficacy, and limited tissue distribution.

In this Account, we describe our efforts to design and synthesize “foldamers”-- short sequence-specific oligomers based on ary-
lamide and �-amino acid backbones, which fold into well-defined secondary structures-- that could act as antimicrobial agents.
We reasoned that small “foldamers” would be less expensive to produce than peptides, and might have better tissue distribu-
tion. It should be easier to fine-tune the structures and activities of these molecules to minimize toxicity.

Because the activities of many AMPs depends primarily on their overall physicochemical properties rather than the fine details of their
precise amino acid sequences, we have designed and synthesized very small “coarse-grained” molecules, which are far simpler than nat-
urally produced AMPs. The molecular design of these foldamers epitomizes the positively charged amphiphilic structures believed to be
responsible for the activity of AMPs. The designed oligomers show greater activity than the parent peptides. They have also provided
leads for novel small molecule therapeutics that show excellent potency in animal models for multidrug resistant bacterial infections. In
addition, such molecules can serve as relatively simple experimental systems for investigations aimed at understanding the mechanism
of action for this class of antimicrobial agents. The foldamers’ specificity for bacterial membranes relative to mammalian membranes
appears to arise from differences in membrane composition and physical properties between these cell types.

Furthermore, because experimental coarse-graining provided such outstanding results, we developed computational coarse-
grained models to enable molecular dynamic simulations of these molecules with phospholipid membranes. These simulations
allow investigation of larger systems for longer times than conventional molecular dynamics simulations, allowing us to investi-
gate how physiologically relevant surface concentrations of AMP mimics affect the bilayer structure and properties. Finally, we apply
the principles discovered through this work to the design of inexpensive antimicrobial polymers and materials.
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Introduction
Biological macromolecules including proteins and RNA gen-

erally adopt unique, folded conformations that are responsi-

ble for their remarkable properties. Until recently, the process

of folding was considered a mystery, but as the fields of pro-

tein folding, RNA structure, and molecular organization have

advanced, it has become increasingly possible to design non-

biological molecules that fold into unique structures. To mimic

natural proteins, various investigators have synthesized oligo-
mers by sequentially coupling individual monomeric units to

provide homogeneous linear molecules of entirely uniform

sequence and chain length. An early short list of such oligo-

mers would include poly(pyrol/imidazole) DNA-binding oligo-

mers,4 pyrrolinone peptide mimetics,5 arylamides,6-10 N-alkyl-

glycines (peptoids11), polyurethanes,12 and pheny-

lene-ethynylenes.13,14 Oligomers that fold into well-defined

secondary structures have come to be known as foldamers
(see refs 15-22 for reviews). In the past decade, the area of

foldamer research has blossomed in manifold directions, pro-

viding a rich diversity of backbone structures. The structural

simplicity and relative ease of synthesis of many foldamers

allow them to be used as three-dimensional scaffolds for

molecular recognition, which, in iterative steps, can be down-

sized to the dimensions of small molecules for various bio-

logical applications.

Already there are multiple examples of functional foldam-

ers that target a number of molecular and biological targets

including RNA, proteins, membranes, and carbohydrates, often

with affinities approaching or equaling those of natural R-pep-

tides (for recent reviews, see refs 19 and 23). It is, however,

also important to identify applications of foldamers to address

problems that cannot be solved by use of conventional pep-

tides composed of D- or L-R-amino acids. Along these lines, we

focused on antimicrobial foldamers that mimic the host

defense peptides.

Host Defense Peptides, Innate Sources of
Antibiotics?
Antibiotic resistance is now one of the most pressing global

healthcare problems facing society.24,25 Although hospital-

acquired, or nosocomial, infections in the United States have

gradually declined, approximately 70% of them are resistant

to at least one antibiotic, and the trend is increasing. For

example, of the approximately two million people who will

acquire nosocomial infections this year in U.S. hospitals,

99 000 will die from the infection.26 Antimicrobial peptides

(AMPs) have provided a new approach to developing antibi-

otics because they play a central role in the innate immunity

system of many organisms.1-3,27-29 In some primitive organ-

isms that lack a humoral response AMPs and a few enzymes

provide the main defense against bacteria, yeast, fungus, and

even viruses. Ribosomally encoded AMPs are typically 12 to

approximately 80 residues in length and adopt various active

conformations, including R-helices (magainin and cecropin),

disulfide-rich �-sheets (bactenecin and defensin) (Figure 1), and

other tertiary structures.

Most AMPs adopt highly amphiphilic conformations in

which the cationic hydrophilic and hydrophobic side chains

segregate onto distinctly opposing regions or faces of the

overall folded conformation. This amphiphilic topology

appears to be important for insertion into and disruption of the

cytoplasmic membrane, leading to bacteria death.1,30 This

simple physical mechanism of action has resulted in a rela-

tively low propensity for the development of bacterial resis-

tance. However, AMPs can also interact in multiple ways with

other components of the innate immune system (reviewed in

ref 31), many AMP’s can act by additional mechanisms,3,32-34

and bacteria are able to respond to AMPs27,35,36 and even

evolve novel resistance to their toxic affects.37,38

From Natural Host Defense Peptides to
Antimicrobial �-Peptide and Peptoids
Previously, antimicrobial peptides have been designed by ide-

alizing the amphiphilicity of natural AMPs,2,39-41 introduc-

tion of D-amino acids42,43 or long acyl chains,44,45 and

cyclization.42,46 The availability of �-peptides provided another

avenue to probe the requirements for activity, because they

can adopt distinct secondary structures such as “12-helices”

and “14-helices”.15,17-20

Our group,47,48 as well as those of Gellman49 and See-

bach,50 independently showed that �-peptides capable of

forming amphiphilic 14- or 12-helices had potent antimicro-

bial activity (Figure 2). Oligomers with lengths of 10-15 res-

idues that achieved an appropriate hydrophilic/lipophilic

balance were selective for killing bacteria vs mammalian cells.

Oligomers that were too short were inactive, and they also

FIGURE 1. Structure of an R-helical magainin (pdb code 2MAG)
and a �-sheet defensin peptide (1BNB) in which the cationic groups
are colored dark blue and the nonpolar groups are colored green.
The facially amphiphilic nature of the overall conformation is
highlighted by the segregation of these groups.
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failed to adopt the desired conformation, while those that

were too long or hydrophobic showed unacceptably high tox-

icities toward human erythrocytes. While these studies were

in progress, Gellman and co-workers also described a potent

and highly selective antimicrobial peptide based on cyclic

�-amino acids. These studies were subsequently extended to

a variety of different helical types formed by �-peptides and

R/�-peptides.51-55 In a similar manner, Patch and Barron

designed amphiphilic, helical, antibacterial N-substituted gly-

cine oligomers (peptoids),22 while Guichard and co-workers

have synthesized enantiomerically pure antimicrobial foldam-

ers based on a urea backbone.56 It was further demonstrated

that charge, facial amphiphilicity, and an appropriate hydro-

philic/hydrophobic balance were generally important for

obtaining selective, nontoxic compounds, although there

seems to be no absolute requirement for any one molecular

feature.57

Antimicrobial Arylamides and Arylureas
The diversity of structures and molecular frameworks

employed in the above studies led us to ask whether these

principles could be extended to design much simpler oligo-

mers, such as aromatic arylamides,6-10 which have been

examined extensively in fundamental studies of hydrogen

bonding and molecular recognition. Given their relative ease

of synthesis, they appeared excellent candidates to initiate the

structural simplification or “synthetic coarse graining” of anti-

microbial compounds. We prepared compounds related to the

core structure 1, which contains alternating 1,3-phenylene

diamine units connected by an isophthalic acid.

A thioether provided a convenient point for attachment of

basic groups while also rigidifying the molecule through the

formation of intramolecular hydrogen bonds. The segrega-

tion between the polar aminoethyl-thioether from the hydro-

phobic t-butyl group provided facial amphiphilicity to the

overall structure. Quantum mechanical calculations,58 molec-

ular dynamics simulations,58 and crystallographic analysis of

model compounds (Figure 3) confirmed that the thioether

indeed hydrogen bonded with the neighboring amide. In both

amides and ureas, the planar arrangement between the cen-

tral ring and the carbonyl is enforced by NH-thioether hydro-

gen bonding and possibly a nonconventional CH-hydrogen

bond.59

Initially we synthesized oligomers of repeating structure

1.60 Compounds with two to three repeats had antibacterial

activity with minimum inhibitory concentrations (MICs) as low

as ∼15 µg/mL, although they lysed human red blood cells

(RBCs) at similar or lower concentrations. Longer polymers

showed lower antibacterial activity. Interestingly, the simple

three-ring structure, 2 (Table 1, Figure 4), showed reasonable

activity and served as a core fragment for elaboration of more

active compounds.61 Addition of amino acid substituents to

this core structure resulted in compounds with very good

potency and high specificity for bacteria over mammalian

cells. Positively charged residues, particularly arginine (3 in

Table 1), increased the potency and the safety of the com-

pounds.61

Within this initial design, containing a central isophthalic

acid group, the two backbone ring-carbonyl single bonds

remained rotatable.58,62 The addition of internal hydrogen

bonds within arylamides can effectively limit these torsional

degrees of freedom,63-65 which we reasoned might decrease

conformational flexibility and increase potency.

Introduction of a pyrimidine in compound 466 or dialkoxy-

groups in 558,67 allowed the desired hydrogen bonding (Table

1, Figure 3c). Another strategy involved the design of an ary-

lurea scaffold68 (7), which can form a planar, fully hydrogen-

bonded array. All three of these modifications led to marked

improvements in antimicrobial activity.

Optimization of both the total charge and the hydropho-

bic content proved to be particularly important to the design

of compounds that are highly active and nontoxic in animals.

The introduction of fluorous amino acids into antimicrobial

peptides can lead to increases in potency.69 Similarly, we have

found that the replacement of t-butyl groups with trifluoro-

methyl groups in these arylamides leads to increases in both

potency and safety in compounds such as 8 and 9. These

compounds, like most of those in Table 1, are significantly

FIGURE 2. Structures of a �3-amino acid (left), an antimicrobial �-
peptide, (�3HAla-�3HLys-�3HVal)4-CONH2 (middle), and the natural
R-helical peptide magainin (right). Hydrophobic residues are in
green and basic side chains in blue.
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more potent than the magainin derivative, MSI-78, which has

a MIC against these two bacterial strains of 12.5 µg/mL.

Highly Active Short Antimicrobial
Phenylene Ethynylene
Tew and co-workers dispensed with the amide bond alto-

gether in their design of a phenylene-ethynylene scaffold70

with outstanding antibacterial activity and selectivity.71 Both

polymeric materials and short oligomers were investigated.

The most active compound (structure 10 shown in Table 1)

contains three aromatic rings. Antibacterial screening showed

clearly that the short three-ring oligomer, 10, was highly

potent against a large panel of pathogenic and potential bio-

warfare bacteria.

Biological Mode of Action
AMPs generally act directly on the cytoplasmic membrane,

although this might not be the primary target of some pep-

tides. Indeed, the phenylene-ethynylene derivative, 10,71,72

is able to cause leakage of dyes from phospholipid vesicles at

concentrations similar to those required to kill bacteria. A sim-

ilar time course is also seen for the loss of the membrane

potential in bacteria. The selectivity of AMPs for bacterial

membranes is believed to result from differences between the

phospholipid compositions of mammalian and bacterial mem-

branes. Bacterial membranes tend to be more negatively

charged and lack cholesterol. In many cases,1 more subtle

effects relating to phospholipid composition are involved; pri-

mary phospholipids in mammalian membranes include zwit-

terionic phosphatidylcholine (PC) and negatively charged

phosphatidylserine (PS) headgroups, while bacterial mem-

branes are rich in zwitterionic phosphatidylethanolamine (PE)

and negatively charged phosphatidylglycerol (PG) lipids includ-

ing cardiolipin. The differences in the physical properties of

these various lipids can be as important as the overall charge

of the membrane.51,52,54,73 In particular, the area covered by

the headgroup of PE is less than that of its hydrophobic tail,

causing this phospholipid to be less stable in planar bilayer

phases than PC. This feature appears to be particularly impor-

tant for the high selectivity of compound 10,72,74 which is

much more effective at inducing leakage of PG-PE than

PS-PC vesicles. X-ray scattering suggests that this compound

induces structural changes favoring hexagonal phases in PE-

rich membranes.74 Epand and co-workers have observed sim-

ilar results for antimicrobial foldamers and polymers, which

also require PE for activity.51,52,54,73 Although the

phenylene-ethynylene compounds showed a good relation-

ship between membrane-perturbing effects and activity, some

of the most potent arylamides cause complete membrane

depolarization of Staphylococcus aureus at concentrations

somewhat higher than those required to cause rapid cell

death. This finding might reflect a mechanism of action that

is distinct from membrane perturbation, or it might simply

indicate that only a small degree of perturbation is required

to ultimately trigger cell death.

The mechanism of action of these foldamers are of inter-

est with respect to the mechanisms of host defense peptides.

Like many AMPs, they are too short to span the hydrophobic

FIGURE 3. Crystal structures of model thioether-containing arylamide (a), arylurea (b), and a dialkoxy-substituted arylamide (c, d).
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length of the bilayer, so they presumably work by a mecha-

nism resembling the “carpet” mechanism of AMP.75 What is

critical for this mechanism is that the compounds bind with a

sufficiently favorable free energy of association and penetrate

the outer leaflet of the bacterial membrane during the initial

steps of the process. Furthermore, the compounds must have

sufficient polar character to provide water solubility with which

to reach the host membrane. Additionally, if the compounds

are too hydrophobic, they will bind indiscriminately to mam-

malian membranes leading to high toxicity. Our data clearly

shows that there is no unique combination of molecular fea-

tures that is absolutely required to satisfy these provisions.

Flexible peptides frequently adopt more ordered conforma-

tions upon binding; in these structures appropriately placed

hydrophobic or charged groups can easily mitigate any loss in

conformational entropy required for binding. Thus, for each

scaffold there exists a delicate balance between charge, hydro-

phobicity, and rigidity that must be fine-tuned to optimize both

potency and selectivity.

Antimicrobial Polymers
Studies with antimicrobial foldamers have also informed the

design of a variety of arylamide, phenylene-ethynylene, acry-

late (Figure 5), and hydrocarbon-based polymers and materi-

als. While an exhaustive review of other antimicrobial

polymers would be beyond the scope of this Account, it is

important to note that Gelman and co-workers have also

developed polymeric antimicrobial agents whose mechanisms

of action have been extensively investigated and compared

with more peptidic AMPs.73,76 Also, cationic polymers with

antibacterial and biocidal activity are well-known,77-82 in

some cases incorporated into materials or immobilized on

surfaces.76-78

Our own work in this area has focused on defining fea-

tures required for selective antimicrobial activity. The

phenylene-ethynylene scaffold was the first polymeric series

to demonstrate antibacterial activity and selectivity;71 inter-

estingly, increasing the MW decreased the selectivity factor.

This trend of decreasing selectivity with increasing MW was

seen with several types of polymers.60,83-85 The decrease in

selectivity reflects both increased toxicity to mammalian cells

and decreased antibacterial activity, possibly due to poor pen-

etration of the large molecules to the cytoplasmic membrane.

This is, however, not universally true because amphiphilic

polynorbornenes with MW > 3000 Da have good antibacte-

rial activity and minimal toxicity to mammalian cells.86-88

Coarse-Grained Computational Models
Antimicrobial oligomers represent minimal, coarse-grained

models that embody the molecular features required for activ-

ity. In a similar spirit, it has been possible to create computa-

tional coarse-grained models of the arylamide class of

antimicrobial foldamers to allow longer simulations of their

membrane-perturbing activities. At the time of our studies, all-

atom molecular dynamics (MD) computer simulations had

been used to explore the interactions of peptide-based anti-

microbials with membranes, but these studies had been lim-

ited to relatively short times89 and only one or a few

antimicrobials.90 Modern coarse-grain approaches91 have

resulted in the development of several models for membrane

simulations in the past years.92-94 In this method, the mole-

cule is considered to be composed of a series of carefully

parametrized interconnected units, each encompassing sev-

TABLE 1. Conformational Tuning of Properties of Antimicrobial
Oligomersa

a Data were collected using the Hancock method; numbers quoted here may
differ somewhat from those in the original publications if a different method
was originally used to determine MICs. b Tetracycline- and streptomycin-
resistant S. aureus. c The concentration required to cause 50% lysis of a
suspension of red blood cells.
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eral atoms. By reduction of the number of atoms, fewer dis-

tances need to be calculated at each MD step, making a

significant increase in computational speed possible.

Coarse-grain MD allowed microsecond simulations with a

relevant number of arylamides per bilayer95 at coarse-grained

oligomer/phospholipid (CGO/PL) from 1:256 to 1:14, span-

ning surface concentrations that experimentally give rise to

from none to very rapid vesicle lysis. The antimicrobial was

initially placed in the aqueous phase just above one side of

the membrane to eliminate the requirement for diffusion to

the membrane surface, which can be rate-limiting in experi-

mental studies. Different results were observed at the two

extreme CGO/PL ratios. At low CGO/PL ratios, the antimicro-

bial inserts into the bilayer with its long axis parallel to the

membrane surface and its apolar groups penetrating into the

membrane (Figure 6). By contrast, at the high CGO/phospho-

lipid ratios required for lysis of bilayers in experimental sys-

tems,95 the drugs initially insert with an ensemble of different

angles. The very large imbalance in the concentration of the

oligomers between the proximal and the distal leaflets of the

bilayer leads to a metastable state with pronounced buckling

of the proximal leaflet of the bilayer. This imbalance provides

a strong driving force for translocation of the drug molecules

to the opposite side of the bilayer; the buckling and disorder-

ing of the bilayer structure might additionally lower the kinetic

barrier for translocation. The CGOs frequently diffuse in pairs

across the bilayer, often with accompanying ions and water

molecules. Following the translocation step, the oligomers are

oriented predominantly parallel to the bilayer, although with

less extensive ordering than in the simulations at low antimi-

crobial/phospholipid ratios. In the final configuration the

ammonium end of the molecule locates near the glycerol

backbone, significantly below the highly polar zwitterionic

headgroups. Thus, the polarity gradient of the membrane is

altered, with the introduction of charged groups that have a

high preference to be hydrated at otherwise relatively nonpo-

lar regions of the bilayer. The result is an increased perme-

ability to water in the simulations.

These simulations provide pictorial detail to prior models

inferred from experimental studies. They explain the depen-

dence of lysis on a high order of the peptide concentration;

sufficient concentrations of the oligomers must accumulate in

the cis leaflet of the bilayer to induce membrane disruption

and to provide a driving force for oligomer translocation. Sec-

ond, the simulations are in agreement with the experimental

observation that membrane disruption is a biphasic process.

In the initial step, the oligomers bind to and strongly buckle

and otherwise asymmetrically perturb the bilayer. The subse-

FIGURE 4. Optimization of the activity of arylamide oligomers, including the introduction of hydrogen-bonding substitutents and
optimization of pendent functional groups.

FIGURE 5. Structure of antimicrobial polyacrylamide and
polynorbornenyl polymers.
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quent translocation step appears to occur with concomitant

formation of pathways for solvent and solute diffusion. Finally,

following equilibration of the compounds on both sides of the

bilayer, the membrane reaches a state that is intrinsically more

permeable than the initial membrane. There are also differ-

ences between the coarse-grained and experimental observa-

tions. The first is in the time scale of the events, because

experimental measurements require an initial diffusion to the

membrane surface, which can be rate-determining. The sec-

ond difference is that the size of our system precludes the

observation of large long-lived pores or other openings in the

membrane. Thus, the increase in permeability to water and

ions observed in our simulations may be a prelude to more

deep-seated disruption of the membrane, induced by osmotic

imbalances in cellular systems.

Potential of Synthetic Foldamers as
Antimicrobials for Fundamental and
Applied Research
In summary, beginning with peptides of molecular weights in

the range of 2000-5000 Da, it has been possible first to pre-

pare �-peptides with significantly lower molecular weights, fol-

lowed by arylamides and small molecules with molecular

weights in the range of 600-1000 Da.67,96 The simplicity of

these compounds makes them outstanding candidates for fun-

damental computational and experimental studies of the

mechanism of membrane disruption. Furthermore, proteomic

and genomic studies will illuminate the mechanisms by which

bacteria respond to these agents compared with natural AMPs.

From a more practical perspective, the lower MW and non-

peptidic structures of arylamides have allowed us to address

previous problems, including problems with tissue distribu-

tion, toxicity, and cost of materials, that plagued the develop-

ment of peptidic analogues of AMPs as intravenously

administered antibiotics.1 Experimental studies in vitro have

shown that bacteria cannot easily develop resistance to this

class of compounds,67 suggesting they might not suffer from

some of the same problems of resistance encountered in other

classes of antibiotics with more specific targets. Indeed, a com-

pound designed by these principles successfully completed the

first phase of human clinical trials as an iv antibiotic for treat-

ment of multidrug-resistant S. aureus.96

We thank our many co-workers for their contributions to these

studies and acknowledge Grants GM54616 and AI74866 from
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